Phases of Nuclear Matter

Wolfram Weise
Trento and Technische Universität München

Nuclear Chiral Thermodynamics

- QCD interface with nuclear physics:
 Chiral Effective Field Theory
- Nuclear Equation of State and QCD phase diagram
- Density and temperature dependence of the Chiral (Quark) Condensate
- New constraints from Neutron Stars
NUCLEAR MATTER and QCD PHASES

nuclei

![Image of a nucleus with dashed lines pointing to different phases on a phase diagram.]

Scales in nuclear matter:

- **momentum scale:**
 - **Fermi momentum**
 \[k_F \simeq 1.4 \text{ fm}^{-1} \sim 2m_\pi \]
- **NN distance:**
 \[d_{NN} \simeq 1.8 \text{ fm} \sim 1.3 \text{ m}_\pi \]
- **energy per nucleon:**
 \[E/A \simeq -16 \text{ MeV} \]
- **compression modulus:**
 \[K = (260 \pm 30) \text{ MeV} \sim 2m_\pi \]
Nuclear Forces
- recent developments -

contemporary approach:

Chiral Effective Field Theory + Lattice QCD

Early history: M. Taketani et al. (1951)

Hierarchy of SCALES

contact terms

explicit treatment of two-pion exchange

definite core and tensor force from Lattice QCD

m_π = 0.53 GeV

S. Aoki, T. Hatsuda, N. Ishii
CHIRAL EFFECTIVE FIELD THEORY

- Systematic framework at interface of QCD and Nuclear Physics
- Interacting systems of **PIONS** (light / fast) and **NUCLEONS** (heavy / slow):

\[\mathcal{L}_{\text{eff}} = \mathcal{L}_\pi(U, \partial U) + \mathcal{L}_N(\Psi_N, U, ...) \]

\[U(x) = \exp\left[i\tau_a \pi_a(x)/f_\pi\right] \]

- Construction of Effective Lagrangian: **Symmetries**

 short distance dynamics: contact terms

Technische Universität München
NUCLEAR INTERACTIONS from CHIRAL EFFECTIVE FIELD THEORY

Systematically organized HIERARCHY
Explicit $\Delta (1230)$ DEGREES of FREEDOM

- **Large spin-isospin polarizability** of the Nucleon

 example: polarized Compton scattering

 \[
 \beta_\Delta = \frac{g_A^2}{f_\pi^2 (M_\Delta - M_N)} \sim 5 \text{ fm}^3
 \]

 \[
 M_\Delta - M_N \simeq 2 m_\pi << 4\pi f_\pi
 \]

 (small scale)

- **Pionic Van der Waals** - type intermediate range central potential

 N. Kaiser, S. Fritsch, W.W., NPA750 (2005) 259

 \[
 V_c(r) = -\frac{9 g_A^2}{32\pi^2 f_\pi^2} \beta_\Delta e^{-2m_\pi r} \frac{P(m_\pi r)}{r^6}
 \]

 strong 3-body interaction

 J. Fujita, H. Miyazawa (1957)
 Pieper, Pandharipande, Wiringa, Carlson (2001)
Explicit $\Delta(1230)$ DEGREES of FREEDOM (contd.)

<table>
<thead>
<tr>
<th>Standard Chiral EFT</th>
<th>Including Δ as an explicit DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>$X \bar{H}$</td>
</tr>
<tr>
<td>NLO</td>
<td>$X \bar{H} + \underbrace{\text{Other Diagrams}}_{g_A}$</td>
</tr>
<tr>
<td>N^2LO</td>
<td>$\underbrace{\text{Other Diagrams}}{h_A}$ + $\underbrace{\text{Other Diagrams}}{b_3 + b_8}$</td>
</tr>
</tbody>
</table>

- Important physics of $\Delta(1230)$ promoted to NLO
- Improved convergence

Kaiser et al., Ordonez et al.
Krebs, Epelbaum, Meißner (2007)
Important pieces of the CHIRAL NUCLEON-NUCLEON INTERACTION

ISOVECTOR TENSOR FORCE

\[V_T \]

\[S_1 \rightarrow S_2 \]

note: no \(\rho \) meson

CENTRAL ATTRACTION from TWO-PION EXCHANGE

\[\Delta(1232) \]

Van der WAALS - like force:

\[V_c(r) \propto -\frac{\exp[-2m_\pi r]}{r^6} P(m_\pi r) \]

... at intermediate and long distance

note: no \(\sigma \) boson
CHIRAL DYNAMICS and the NUCLEAR MANY-BODY PROBLEM

- Small scales:
 \[k_F \sim 2 m_\pi \sim M_\Delta - M_N << 4\pi f_\pi \]

- PIONS (and DELTA isobars) as explicit degrees of freedom

IN-MEDIUM CHIRAL PERTURBATION THEORY

Pion exchange processes in presence of filled Fermi sea

\[\pi \text{ exchange processes in } \cdots \]

2nd order TENSOR force + nucleon’s SPIN-ISOSPIN polarizability

Short-distance dynamics: contact interactions (incl. resummations)

\[N \times N \]
IN-MEDIUM CHIRAL PERTURBATION THEORY

- "Medium insertion" in the nucleon propagator:

 \[
 (\gamma_\mu p^\mu + m_N) \left[\frac{i}{p^2 - m_N^2 + i\varepsilon} - 2\pi \delta(p^2 - m_N^2) \theta(p^0) \theta(k_F - |\vec{p}|) \right]
 \]

- **Loop expansion** of (In-Medium) Chiral Perturbation Theory

 - Systematic expansion of **ENERGY DENSITY** \(\mathcal{E}(k_F) \) in **powers** of Fermi momentum [modulo functions \(f_n(k_F/m_\pi) \)]

 \(\text{(works for } k_F << 4\pi f_\pi \sim 1 \text{ GeV)} \)

- **Nuclear thermodynamics**: compute **free energy density**

 - **(3-loop order)**

- **in-medium** nucleon propagators incl. Pauli blocking
In-medium ChPT
3-loop \((\pi, N, \Delta)\)

Input parameters:
two contact terms

basically:
analytic calculation

Output:

- Binding & saturation
 \[E_0/A = -16 \text{ MeV} , \quad \rho_0 = 0.16 \text{ fm}^{-3} , \quad K = 290 \text{ MeV} \]

- Realistic (complex, momentum dependent) single-particle potential
 ... satisfying Hugenholtz - van Hove and Luttinger theorems (!)

- Asymmetry energy: \[A(k_F^0) = 34 \text{ MeV} \]

- Quasiparticle interaction and Landau parameters

S. Fritsch, N. Kaiser, W.W.

J.W. Holt, N. Kaiser, W.W.
Nucl. Phys. A 870 (2011) 1,
Nucl. Phys. A 876 (2012) 61,
NUCLEAR THERMODYNAMICS

NUCLEAR CHIRAL (PION) DYNAMICS

BINDING & SATURATION:

Van der Waals + Pauli

\[\pi \]

N, \Delta

+ 3-body forces

\[N \quad N \]

contact terms

nuclear matter: equation of state

\[P \text{[MeV/fm}^3\text{]} \]

\[\rho \text{[fm}^{-3}\text{]} \]

3-loop in-medium ChEFT

\[T = 25 \text{ MeV} \quad 20 \]

\[T = 15 \]

\[T = 10 \]

\[T = 5 \]

\[T = 0 \]

Liquid - Gas Transition at
Critical Temperature \(T_c = 15 \text{ MeV} \)
(empirical: \(T_c = 16 - 18 \text{ MeV} \))
PHASE DIAGRAM of NUCLEAR MATTER

- **In-medium**
 chiral effective field theory
 (3-loop calculation of free energy density)

 S. Fritsch, N. Kaiser, W.W.

 S. Fiorilla, N. Kaiser, W.W.

- Pion-nucleon dynamics including delta isobars
- Short-distance NN contact terms
- Three-body forces

Diagram:
- **Critical point**
- **Gas**
- **Liquid**
- **Symmetric nuclear matter (N = Z)**

Axes:
- Temperature \(T \) [MeV]
- Baryon chemical potential \(\mu_B \) [MeV]

Graph:
- **Gas**
- **Liquid**
- **Phase transition**

Legend:
- **Gas**
- **Liquid**
- **Critical point**
- **Symmetric nuclear matter**

Equations:

\[
N = Z
\]

Notes:
- Phase diagram of nuclear matter
- In-medium calculations
- Contributions from various researchers

Technische Universität München
PHASE DIAGRAM of NUCLEAR MATTER

Trajectory of CRITICAL POINT for asymmetric matter
as function of proton fraction Z/A

... determined almost completely by isospin dependent (one- and two-) pion exchange dynamics

S. Fiorilla, N. Kaiser, W.W.
In-medium chiral effective field theory (3-loop) with resummation of short distance contact terms (large \(n n \) scattering length, \(a_s = 19 \, \text{fm} \))

Neutron matter behaves almost like a unitary Fermi gas

Bertsch parameter

\[
\xi = \frac{\overline{E}}{E_{\text{Fermi gas}}} \simeq 0.5
\]

perfect agreement with sophisticated many-body calculations
(e.g. VCS (Urbana) or QMC methods (P. Armani et al., arXiv:1110.0993))

Akmal, Pandharipande, Ravenhall

Quasiparticle interaction based on accurate NNLO chiral nucleon-nucleon interaction including three-body forces:

\[
\delta E = \sum_{\vec{p} \; \text{st}} \epsilon_{\vec{p}} \delta n_{\vec{p} \; \text{st}} + \frac{1}{2} \sum_{\vec{p}_1 s_1 t_1 \; \vec{p}_2 s_2 t_2} \mathcal{F}(\vec{p}_1 s_1 t_1; \vec{p}_2 s_2 t_2) \delta n_{\vec{p}_1 s_1 t_1} \delta n_{\vec{p}_2 s_2 t_2} + \cdots,
\]

\[
\mathcal{F}(\vec{p}_1, \vec{p}_2) = f(\vec{p}_1, \vec{p}_2) + g(\vec{p}_1, \vec{p}_2) \vec{\sigma}_1 \cdot \vec{\sigma}_2 + h(\vec{p}_1, \vec{p}_2) S_{12}(\hat{q}) + \ldots
\]

Chiral Fermi Liquid Approach to Neutron Matter

- **V(low-k) + 3N**
- **chiral NN + 3N**

V. We end with a summary and conclusions.
CHIRAL CONDENSATE:
DENSITY and TEMPERATURE DEPENDENCE

- Free energy density
 \[\mathcal{F}(m_q; \rho, T) \]

- In-medium Chiral Effective Field Theory
 (NLO 3-loop)
 constrained by realistic nuclear equation of state

- No indication of first order chiral phase transition for
 \[\rho \lesssim 2 \rho_0, \quad T \lesssim 100 \text{ MeV} \]

\[\langle \Psi \mid \bar{q} q \mid \Psi \rangle_{\rho, T} = \frac{\partial \mathcal{F}(m_q; \rho, T)}{\partial m_q} \]

\[\frac{\langle \bar{q} q \rangle_{\rho, T}}{\langle \bar{q} q \rangle_0} \]

\[\langle \bar{q} q \rangle_0 \]

symmetric nuclear matter
\[N = Z \]

\[T = 0 \]

\[T = 100 \text{ MeV} \]

\[\rho \text{ [fm}^{-3}\text{]} \]

\[\rho \text{ [fm}^{-3}\text{]} \]

\[\rho \text{ [fm}^{-3}\text{]} \]
CHIRAL CONDENSATE:
Dependence on TEMPERATURE and BARYON CHEMICAL POTENTIAL

- Liquid-gas phase transition leaves its signature also in chiral condensate
- but: no tendency toward chiral first order transition in the range $\mu_B \lesssim 1$ GeV
LIQUID - GAS TRANSITION
and
CHEMICAL FREEZE-OUT

Chiral nucleon - meson model

\[
\mathcal{L} = \bar{\psi}_a i \gamma^\nu (\partial_\nu - i g \omega_\nu - i \mu \delta_{0\nu}) \psi_a \\
+ \sqrt{2} h [\bar{\psi}_a (\frac{1+\gamma_5}{2}) \phi_{ab} \psi_b + \bar{\psi}_a (\frac{1-\gamma_5}{2}) (\phi^\dagger)_{ab} \psi_b] \\
+ \frac{1}{2} \phi^*_{ab} (-\partial_\mu \partial^{\mu}) \phi_{ab} + U_{\text{mic}}(\rho, \sigma) \\
+ \frac{1}{4} (\partial_\mu \omega_\nu - \partial_\nu \omega_\mu) (\partial^{\mu} \omega^{\nu} - \partial^{\nu} \omega^{\mu}) + \frac{1}{2} m^2_\omega \omega_\mu \omega^\mu
\]

\[
\phi_{ab} = \begin{pmatrix}
\frac{1}{\sqrt{2}}(\sigma + i\pi^0) & i\pi^- \\
\pi^+ & \frac{1}{\sqrt{2}}(\sigma - i\pi^0)
\end{pmatrix} \quad U_{\text{mic}}(\rho, \sigma) = \tilde{U}(\rho) - m^2_\pi f_\pi \sigma \\
\rho = \frac{1}{2}(\sigma^2 + \pi^2)
\]

Effective potential constructed to reproduce standard nuclear thermodynamics around equilibrium
Chemical freeze-out in baryonic matter at $T < 100$ MeV is **not** associated with (chiral) phase transition or rapid crossover.
Neutron Star Scenarios

Tolman-Oppenheimer-Volkov equations

\[
\frac{dP}{dr} = -\frac{G}{c^2} \frac{(M + 4\pi Pr^3)(E + P)}{r(r - GM/c^2)}
\]

\[
\frac{dM}{dr} = 4\pi r^2 \frac{E}{c^2}
\]
New constraints from NEUTRON STARS

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest1, T. Pennucci2, S. M. Ransom1, M. S. E. Roberts3 & J. W. T. Hessels4,5

direct measurement of neutron star mass from increase in travel time near companion J1614-2230
most edge-on binary pulsar known (89.17°) + massive white dwarf companion (0.5 M\textsubscript{sun})

heaviest neutron star with 1.97±0.04 M\textsubscript{sun}

Constraints from **neutron star observables**

A.W. Steiner, J. Lattimer, E.F. Brown

K. Hebeler, J. Lattimer, C. Pethick, A. Schwenk
PRL 105 (2010) 161102

realistic “nuclear” EoS
A. Akmal, V.R. Pandharipande, D.G. Ravenhall

“Exotic” equations of state ruled out?
NEUTRON STAR MATTER
Equation of State

Including new neutron star constraints plus Chiral Effective Field Theory at lower density
NEUTRON STAR Equation of State

- ChEFT \((n, p, e, \mu)\)
- PNJL \(G_v/G = 0.7 (d, u, e)\)
- PNJL \(G_v = 0 (d, u, e)\)

(2 versions of 2-flavor chiral quark models)

- “green belt” permitted by M(R) constraints
- PNJL with vector coupling
- PNJL without vector coupling
- realistic “conventional” nuclear EoS

NEUTRON STAR MATTER
Mass - Radius relation

- Conventional hadronic \((\text{baryonic} + \text{mesonic})\) degrees of freedom

- In-medium Chiral Effective Field Theory up to 3 loops (reproducing thermodynamics of normal nuclear matter) including beta equilibrium \(n \leftrightarrow p + e, \mu\)

\[\rho_0 = 0.16 \text{ fm}^{-3}\]
(density of normal nuclear matter)

\[M = 2M_0\]
\[R = 11.9 \text{ km}\]
NEUTRON STARS: MASS and RADIUS constraints

from: J. Trümper
Irsee Symposium 2012

HARD Equation of State required !!

1 Largest mass J1614 - 2230 (Demorest et al. 2010)
2 Maximum gravity XTE 1814 – 338 (Bhattacharyya et al. 2005)
3 Minimum radius RXJ1856 - 3754 (Trümper et al. 2004)
4 Radius, 90% confidence limits LMXB 47 Tuc (Heinke et al. 2006)
5 Largest spin frequency J1748 – 2446 (Hessels et al. 2006)
NEUTRON STAR MATTER

Equation of State

- In-medium **Chiral Effective Field Theory** up to 3 loops (reproducing thermodynamics of normal nuclear matter)

- **3-flavor PNJL** model at high densities (incl. *strange* quarks)

Figure:

- **Green** and **blue** belts permitted by \(M(R) \) constraints

- **Chiral EFT** EoS

- **Coexistence region:** Gibbs conditions

- **Beta equilibrium:** \(n \leftrightarrow p + e, \mu \)

- **Charge conservation**

- **Quark-nuclear coexistence** occurs (if at all) at baryon densities \(\rho > 5 \rho_0 \)
NEUTRON STAR MATTER
Mass - Radius Relation and Composition

- In-medium **Chiral Effective Field Theory** + 3-flavor **PNJL** model

Chiral EFT + PNJL

- $G_v = 0.5 \, \text{G}$
- $G_v = 0$

- Strangeness: small admixtures of Λ hyperons possible at $\rho > 3 \, \rho_0$
 - Strong repulsion

M / M_\odot vs. $R [\text{km}]$

ρ / ρ_0 vs. ρ_0

Steiner et al.

Trümper

ρ_i / ρ

neutrons

quarks

protons

Technische Universität München
Densities and Scales in Compressed Baryonic Matter

\[\rho_B = 0.15 \text{ fm}^{-3} \]

normal nuclear matter: dilute

\[\rho_B = 0.6 \text{ fm}^{-3} \]

neutron star core matter: compressed but not superdense

- recall: chiral (soliton) model of the nucleon
- compact baryonic core
 \[\langle r^2 \rangle_B^{1/2} \approx 0.5 \text{ fm} \]

- mesonic cloud
 \[\langle r^2 \rangle_{E, \text{isoscalar}}^{1/2} \approx 0.8 \text{ fm} \]

... treated properly in chiral EFT
SUMMARY

- **Low-energy QCD**
 - Spontaneously broken **chiral symmetry**
 - **Effective Field Theory** of weakly interacting **Nambu-Goldstone bosons**

- **Nuclear thermodynamics**: Fermi liquid ↔ interacting Fermi gas
 - Framework: In-medium **Chiral Effective Field Theory**
 - **No** indication of first order chiral phase transition in the range $\rho \leq 2\rho_0$, $T \leq 100$ MeV

- New **dense & cold matter** constraints from **neutron stars**:
 - Mass - radius relation; observation of two-solar-mass n-star
 - “**Conventional**” (non-exotic) **EoS works best**
 (nuclear effective field theory + advanced many-body methods)
 - Small admixtures of **strangeness** possible, but need repulsive short-range hyperon-nucleon and hyperon-hyperon interactions
The End

thanks to

Nino Bratovic
Thomas Hell
Sebastian Schultess

Matthias Drews
Jeremy Holt

Salvatore Fiorilla
Norbert Kaiser
Corbinian Wellenhofer