Theory of ANTIIKAI\textsc{on} interactions with NUCLE\textsc{ons} and NUCLE\textsc{I}

a state-of-the-art report

Wolfram Weise
Technische Universität München

- Low-energy QCD: symmetries and symmetry breaking patterns
- Strangeness and chiral SU(3) dynamics
- $\bar{K}N$ threshold physics and kaonic hydrogen
- Antikaons in baryonic matter
- New constraints from neutron stars
Hierarchy of **QUARK MASSES** in **QCD**

“light” quarks

\[m_d \approx 4 - 6 \text{ MeV} \]
\[m_u/m_d \approx 0.3 - 0.6 \]
\[m_s \approx 80 - 130 \text{ MeV} \]
\[(\mu \approx 2 \text{ GeV}) \]

LOW-ENERGY QCD: CHIRAL EFFECTIVE FIELD THEORY

- expansion in \(m_q \)
- and in powers of low momentum

“heavy” quarks

\[m_c \approx 1.25 \text{ GeV} \]
\[m_b \approx 4.2 \text{ GeV} \]
\[m_t \approx 174 \text{ GeV} \]

Non-Relativistic QCD: HEAVY QUARK EFFECTIVE THEORY

- expansion in powers of \(1/m_Q \)
LOW-ENERGY QCD
with
STRANGE QUARKS:

Chiral SU(3) Dynamics

... realized as an EFFECTIVE FIELD THEORY with SU(3) octet of pseudoscalar Nambu-Goldstone bosons coupled to the baryon octet.

... explicit chiral symmetry breaking by non-zero quark masses (at a renormalization scale $\mu \sim 2$ GeV):

$$m_q = \frac{m_u + m_d}{2} = 3 - 5 \text{ MeV} \quad m_s \sim 25 \, m_q$$
Strange quarks are intermediate between “light” and “heavy”:
- interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD
- Testing ground: high-precision antikaon-nucleon threshold physics
 - strongly attractive low-energy $\bar{K}N$ interaction
- Nature and structure of $\Lambda(1405)$ ($B = 1$, $S = -1$, $J^P = 1/2^-$)
 - three-quark valence structure vs. “molecular” meson-baryon system?
- Quest for quasi-bound antikaon-nuclear systems?
- Role of strangeness in dense baryonic matter?
 - new constraints from neutron stars
NAMBU - GOLDSTONE BOSONS:
Pseudoscalar SU(3) meson octet
\[\{\phi_a\} = \{\pi, K, \bar{K}, \eta_8\} \]

ORDER PARAMETERS:
\[\langle 0 | A_{\mu}^a(0) | \phi_b(p) \rangle = i\delta_{ab} p^\mu f_b \]

DECAY CONSTANTS
(chiral limit: \(f = 86.2 \) MeV)
\[f_\pi = 92.4 \pm 0.3 \text{ MeV} \]
\[f_K = 110.0 \pm 0.9 \text{ MeV} \]
\[f_\eta = 120.1 \pm 4.6 \text{ MeV} \]

Gell-Mann Oakes Renner relations
\[m_\pi^2 f_\pi^2 = -\frac{m_u + m_d}{2} \langle \bar{u}u + \bar{d}d \rangle \]
\[m_K^2 f_K^2 = -\frac{m_u + m_s}{2} \langle \bar{u}u + \bar{s}s \rangle + \text{higher order corrections} \]
CHIRAL SU(3) EFFECTIVE FIELD THEORY

- Interacting systems of **NAMBU-GOLDSTONE BOSONS** (pions, kaons) coupled to **BARYONS**

\[\mathcal{L}_{eff} = \mathcal{L}_{mesons}(\Phi) + \mathcal{L}_B(\Phi, \Psi_B) \]

- Leading **DERIVATIVE** couplings (involving \(\partial^\mu \Phi \))
 determined by spontaneously broken **CHIRAL SYMMETRY**

- **Low-Energy Expansion:** **CHIRAL PERTURBATION THEORY**

 "small parameter": \(\frac{p}{4\pi f_\pi} \sim \frac{\text{energy / momentum}}{1 \text{ GeV}} \)

- works well for low-energy **pion-pion** and **pion-nucleon** interactions

- ... but **NOT** for systems with **strangeness** \(S = -1 \) (\(\bar{K}N \), \(\pi\Sigma \), ...)

Technische Universität München
Low-Energy $\bar{K}N$ Interactions

- Chiral Perturbation Theory **NOT** applicable: $\Lambda(1405)$ resonance 27 MeV below K^-p threshold

 $\Sigma^*(1385) \quad \Lambda^*(1405)$

 ![Diagram](image)

 Non-perturbative **Coupled Channels** approach based on **Chiral SU(3) Dynamics**

- Leading s-wave $l = 0$ meson-baryon interactions (Tomozawa-Weinberg)

 ![Diagram](image)
CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

\[
T_{ij} = K_{ij} + \sum_n K_{in} G_n T_{nj}
\]

- Leading s-wave \(I = 0 \) meson-baryon interactions (Tomozawa-Weinberg)

 Note: **ENERGY DEPENDENCE** characteristic of Nambu-Goldstone Bosons

\[
|1\rangle = |\bar{K}N, I = 0\rangle \\
|2\rangle = |\pi\Sigma, I = 0\rangle
\]

\[
\begin{align*}
K_{11} &= \frac{3}{2 f_K^2} (\sqrt{s} - M_N) \\
K_{22} &= \frac{2}{f_\pi^2} (\sqrt{s} - M_\Sigma)
\end{align*}
\]

- driving interactions individually **strong** enough to produce

 - \(\bar{K}N \) **bound state**
 - \(\pi\Sigma \) **resonance**

- **strong** channel coupling

 \(12 \leftrightarrow 21:\)

\[
\begin{align*}
K_{12} &= \frac{-1}{2 f_\pi f_K} \sqrt{3} \left(\sqrt{s} - \frac{M_\Sigma + M_N}{2}\right)
\end{align*}
\]
CHIRAL SU(3) COUPLED CHANNELS DYNAMICS

\[T_{ij} = K_{ij} + \sum_n K_{in} G_n T_{nj} \]

- **input from**
 - chiral SU(3) meson-baryon effective Lagrangian

- **loop functions**
 - (dim. regularization)
 - with subtraction constants
 - encoding short distance dynamics

coupled channels:

- \(K^- p, \quad K^0 n, \quad \pi^0 \Sigma^0, \quad \pi^+ \Sigma^-, \quad \pi^- \Sigma^+, \quad \pi^0 \Lambda, \quad \eta \Lambda, \quad \eta \Sigma^0, \quad K^+ \Xi^-, \quad K^- \Xi^0 \)
CHIRAL SU(3) COUPLED CHANNELS DYNAMICS:
- NLO hierarchy of driving terms -

Input:
- Physical pion and kaon decay constants
- Axial vector constants
- D and F from hyperon beta decays
- 7 low-energy constants

Leading Order (Weinberg-Tomozawa) Terms

\[
\mathcal{L}^{MB}_1 = \text{Tr} \left(\frac{D}{2} (\bar{B} \gamma^\mu \gamma_5 \{u_\mu, B\}) + \frac{F}{2} (\bar{B} \gamma^\mu \gamma_5 [u_\mu, B]) \right)
\]

Direct and Crossed Born Terms

\[
g_A = D + F = 1.26
\]

\[
\mathcal{L}^{MB}_2 = b_D \text{Tr}(\bar{B}\{\chi_+, B\}) + b_F \text{Tr}(\bar{B}[\chi_+, B]) + b_0 \text{Tr}(\bar{B}B)\text{Tr}(\chi_+)
\]

\[
+ d_1 \text{Tr}(\bar{B}\{u^\mu, [u_\mu, B]\}) + d_2 \text{Tr}(\bar{B}[u^\mu, [u_\mu, B]])
\]

\[
+ d_3 \text{Tr}(\bar{B}u_\mu)\text{Tr}(u^\mu B) + d_4 \text{Tr}(\bar{B}B)\text{Tr}(u^\mu u_\mu),
\]

Next-to-Leading Order (NLO)

\[\mathcal{O}(p^2)\]
The TWO POLES scenario

\[\Lambda(1405) \]

\[|T| \quad [\text{MeV}^{-1}] \]

\[\text{Re}[z] \quad [\text{MeV}] \]

\[\text{Im}[z] \quad [\text{MeV}] \]

Kaonic hydrogen precision data

strong interaction shift and width:

\[\Delta E = 283 \pm 36 \text{ (stat)} \pm 6 \text{ (syst)} \text{ eV} \]

\[\Gamma = 541 \pm 89 \text{ (stat)} \pm 22 \text{ (syst)} \text{ eV} \]

Theory:

leading order

(Tomozawa - Weinberg)

B. Borasoy, R. Nißler, W.W.

B. Borasoy, U.-G. Meißner, R. Nißler

PRC74 (2006) 055201

Technische Universität München
Improved constraints on chiral SU(3) dynamics from kaonic hydrogen

Yoichi Ikedaa,b,*, Tetsuo Hyodoa and Wolfram Weisec

aDepartment of Physics, Tokyo Institute of Technology, Meguro 152-8551, Japan
bRIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198, Japan
cPhysik-Department, Technische Universität München, D-85747 Garching, Germany

Abstract

A new improved study of K^{-}-proton interactions near threshold is performed using coupled-channels dynamics based on the next-to-leading order chiral SU(3) meson-baryon effective Lagrangian. Accurate constraints are now provided by new high-precision kaonic hydrogen measurements. Together with threshold branching ratios and scattering data, these constraints permit an updated analysis of the complex $\bar{K}N$ and $\pi\Sigma$ coupled-channels amplitudes and an improved determination of the $K^{-}p$ scattering length, including uncertainty estimates.
UPATED ANALYSIS of $K^- p$ THRESHOLD PHYSICS

- Chiral SU(3) coupled-channels dynamics
 Tomozawa-Weinberg + Born terms + NLO

<table>
<thead>
<tr>
<th>kaonic hydrogen shift & width</th>
<th>theory (NLO)</th>
<th>exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔE (eV)</td>
<td>306</td>
<td>283 ± 36 ± 6</td>
</tr>
<tr>
<td>Γ (eV)</td>
<td>591</td>
<td>541 ± 89 ± 22</td>
</tr>
</tbody>
</table>

threshold branching ratios

$\Gamma(K^- p \rightarrow \pi^+ \Sigma^-)/\Gamma(K^- p \rightarrow \pi^- \Sigma^+)$	2.37	2.36 ± 0.04
$\Gamma(K^- p \rightarrow \pi^+ \Sigma^-, \pi^- \Sigma^+)/\Gamma(K^- p \rightarrow \text{all inelastic channels})$	0.66	0.66 ± 0.01
$\Gamma(K^- p \rightarrow \pi^0 \Lambda)/\Gamma(K^- p \rightarrow \text{neutral states})$	0.19	0.19 ± 0.02

scatterings length (fm)

Re $a(K^- p) = -0.65 ± 0.10$ Im $a(K^- p) = 0.81 ± 0.15$

best fit achieved with $\chi^2/d.o.f. \approx 0.9$
Non-trivial result:
best NLO fit prefers **physical** values of **decay constants**:

<table>
<thead>
<tr>
<th>Decay Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_K) (MeV)</td>
<td>110.0</td>
</tr>
<tr>
<td>(f_\eta) (MeV)</td>
<td>118.8</td>
</tr>
</tbody>
</table>

\((f_\pi = 92.4 \text{ MeV}) \)

- **Tomozawa-Weinberg terms dominant**
- **Born terms significant**
- **NLO parameters are non-negligible but small**
- Subtraction constants (encoding unresolved **high energy** behaviour) are of “natural” size
UPDATED ANALYSIS of K^-p LOW-ENERGY CROSS SECTIONS

$\sigma(K^-p \rightarrow K^-p)$ [mb]

$\sigma(K^-p \rightarrow \pi^+\Sigma^-)$ [mb]

$\sigma(K^-p \rightarrow \pi^-\Sigma^+)$ [mb]

$\sigma(K^-p \rightarrow \pi^0\Sigma^0)$ [mb]
K^-p SCATTERING AMPLITUDE

\[
f(K^-p) = \frac{1}{2} \left[f_{\bar{K}N}(I = 0) + f_{\bar{K}N}(I = 1) \right]
\]

threshold region and subthreshold extrapolation:

\[
\Lambda(1405): \quad \bar{K}N \ (I = 0) \; \text{quasibound state embedded in the } \pi \Sigma \; \text{continuum}
\]

Complex scattering length (including Coulomb corrections)

\[
\text{Re } a(K^-p) = -0.65 \pm 0.10 \quad \text{fm}
\]

\[
\text{Im } a(K^-p) = 0.81 \pm 0.15 \quad \text{fm}
\]

The K^-n scattering length is calculated as:

$$a_{K^-n} = 0.29 + 0.76i \text{ fm (WT)}$$

$$a_{K^-n} = 0.27 + 0.74i \text{ fm (WTB)}$$

$$a_{K^-n} = 0.57 + 0.72i \text{ fm (NLO)}$$

The scattering amplitude is shown in Fig. 1. The jump of the real part of the scattering length in the step WTB → NLO is correlated with the jump of the K^-p scattering length:

$$a_{K^-p} = -0.93 + 0.82i \text{ fm (WT)}$$

$$a_{K^-p} = -0.94 + 0.85i \text{ fm (WTB)}$$

$$a_{K^-p} = -0.70 + 0.89i \text{ fm (NLO)}$$

Note that the results with the WT and WTB models are a bit off the SIDDHARTA result.

Figure 1: Scattering amplitude in K^-n channel.
Implications & Comments

- $K^- p$ scattering length more accurately determined than $K^- n$
 (SIDDHARTA constraints vs. uncertainties in $I = 1$ channels)

- **Kaonic deuterium** measurements important for providing further constraints on $K^- n$ interaction

- $B = 2$ systems - key issue:
 \[\bar{K}NN \rightarrow YN \]
 absorption into non-mesonic hyperon - nucleon final states
 e.g.:
 \[
 \begin{array}{c}
 \text{p} \\
 \text{K}^- \\
 \text{n}
 \end{array}
 \quad \quad \quad
 \begin{array}{c}
 \text{Λ}(1405) \\
 \pi \\
 \text{n}
 \end{array}
 \quad \quad \quad
 \begin{array}{c}
 \Sigma \\
 \text{N}
 \end{array}
 \]

 Repulsive short-distance $\Lambda^* (uds) N$ interaction?

- **$\Lambda^* -$ nucleon potential**

```
\[
\Lambda^* \rightarrow \text{Nucleon potential}
\]
```

- Lattice QCD
 Y. Ikeda et al. (HAL QCD collaboration)
Kaons and Antikaons in Nuclear Matter

In-medium Chiral SU(3) Dynamics with Coupled Channels

Kaon spectrum in baryonic matter determined by:

\[
\omega^2 - \vec{q}^2 - m_K^2 - \Pi_K(\omega, \vec{q}; \rho) = 0
\]

\[
\Pi_K^{-} = 2\omega U_K^{-} = -4\pi \left[f_{K^-p} \rho_p + f_{K^-n} \rho_n \right] + \ldots +
\]

Pauli blocking, Fermi motion, 2N correlations

Note: In-medium \(\bar{K} \) width drops when mass falls below \(\pi \Sigma \) threshold
first suggested by D. Kaplan, A. Nelson (1985) on the basis of attractive $\bar{K}N$ Tomozawa - Weinberg term

at high density, energetically favourable to condense K^-

conversion to hyperons via $K^\text{-}NN \rightarrow YN$
Outlook: new constraints from NEUTRON STARS

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest\(^1\), T. Pennucci\(^2\), S. M. Ransom\(^1\), M. S. E. Roberts\(^3\) & J. W. T. Hessels\(^4,5\)

direct measurement of neutron star mass from increase in travel time near companion J1614-2230
most edge-on binary pulsar known (89.17°) + massive white dwarf companion (0.5 \(M_{\text{sun}}\))

heaviest neutron star with 1.97±0.04 \(M_{\text{sun}}\)
News from NEUTRON STARS

K. Hebeler, J. Lattimer, C. Pethick, A. Schwenk
PRL 105 (2010) 161102

A.W. Steiner, J. Lattimer, E.F. Brown

Realistic “nuclear” EoS

A. Akmal, V.J. Pandharipande, D.G. Ravenhall

- **New constraints from EFT and neutron star observables**
- **kaon condensate**
- **quark matter**
- **“Exotic” equations of state ruled out?**
NEUTRON STAR MATTER
Equation of State

Low-density (crust) + ChEFT (FKW)
Constrained extrapolation (polytropes)
Akmal, Pandharipande, Ravenhall (1998)

\[P = \text{const} \cdot \rho^\Gamma \]

Including new neutron star constraints plus Chiral Effective Field Theory at lower density

S. Fiorilla, N. Kaiser, W.W.
Nucl. Phys.
A 880 (2012) 65

B. Röttgers, W.W.
(2011)

W.W.
Prog. Part. Nucl. Phys.
(2012), in print
NEUTRON STAR MATTER

Mass - Radius relation

- **Option I:**
 - Conventional hadronic (*baryonic + mesonic*) degrees of freedom
 - In-medium Chiral Effective Field Theory up to 3 loops
 (reproducing thermodynamics of normal nuclear matter)

Graphs:

- **Left graph:**
 - Mass (M / M_\odot) vs. Radius ($R [\text{km}]$)
 - "conventional" eq. of state nucleons + pions $\Delta(1230)$ 3 body forces
 - PSR J1614-2230

- **Right graph:**
 - Density profile
 - $M = 2.00 M_\odot$
 - $R = 11.94 \text{ km}$

Option II:
Polyakov - Nambu - Jona-Lasinio (PNJL) model
(u-,d- and s-quarks as quasiparticles with dynamically generated constituent masses)

... features **first order chiral phase transition**

at low temperatures and moderate baryon chemical potentials

... produces **too soft** equation of state for neutron matter → does not work

Option III:
Conventional hadronic (ChEFT) EoS

matched smoothly at densities

\[\rho \simeq 3 \rho_0 \]

to PNJL EoS including repulsive vector coupling between quarks

no 1st order phase transition

soft **crossover** between hadronc and quark phases
SUMMARY

- **New** consistent analysis of $\bar{K}N$ threshold physics and scattering data based on chiral SU(3) effective Lagrangian at next-to-leading order.

- **New** evaluation of $K^- p$ scattering length:

 \[
 a(K^- p) = -0.65 + 0.81 \text{ i [fm]} \quad (\sim 15 \% \text{ accuracy})
 \]

 deduced:

 \[
 a(K^- n) \simeq 0.6 + 0.7 \text{ i [fm]} \quad (\text{less accurate})
 \]

- Need kaonic deuterium to complete $\bar{K}N$ and set constraints for $\bar{K}NN \rightarrow YN$ absorption channel.

- **New** constraints from two-solar-mass neutron star and window of n-star radii:

 conventional EoS works best - *kaon condensate* ruled out

 (hyperons may contribute *if* short-range *YN* interactions sufficiently repulsive).