CHIRAL DYNAMICS Realizations of QCD in HADRONIC and NUCLEAR PHYSICS

Wolfram Weise
Technische Universität München

- **Nuclear chiral dynamics**
 QCD interface of nuclear physics: **Chiral Effective Field Theory**

- **Pions** and tensor force in the nuclear many-body problem

- Nuclear thermodynamics

- Density dependence of **chiral** (quark) **condensate**
1 Prelude: **PHASES and STRUCTURES of QCD**

QCD PHASE DIAGRAM

- **nuclei**

Scales in nuclear matter

- momentum scale: **Fermi momentum**
 \[k_F \simeq 1.4 \text{ fm}^{-1} \simeq 2m_\pi \]

- NN distance:
 \[d_{NN} \simeq 1.8 \text{ fm} \simeq 1.3 \text{ m}_\pi^{-1} \]

- energy per nucleon:
 \[E/A \simeq -16 \text{ MeV} \]

- compression modulus:
 \[K = (260 \pm 30) \text{ MeV} \]
Spontaneously Broken CHIRAL SYMMETRY

- NAMBU - GOLDSTONE BOSON: PION

- ORDER PARAMETER: PION DECAY CONSTANT

\[\langle 0 | A_{\mu}^a(0) | \pi^b(p) \rangle = i \delta^{ab} p_\mu f_\pi \]

Axial current

\[f_\pi = 92.4 \text{ MeV} \]

- SYMMETRY BREAKING SCALE:

\[\Lambda_\chi = 4\pi f_\pi \sim 1 \text{ GeV} \]

- PCAC:

\[m_\pi^2 f_\pi^2 = -m_q \langle \bar{\psi} \psi \rangle + O(m_q^2) \]

Gell-Mann - Oakes - Renner Relation
SYMMETRY BREAKING PATTERN

PSEUDOSCALAR MESON SPECTRUM

mass [GeV]

0

SU(3)_L × SU(3)_R

π, K, η_8

m_0 = 0

m_s ≃ 130 MeV

m_u,d ≃ 5 MeV

U(1)_A breaking

η

η_0

η'

calculations:

Nambu & Jona-Lasinio model with N_f = 3 quark flavors

Nucl. Phys. A 516 (1990) 429

T. Hatsuda, T. Kunihiro
Phys. Reports 247 (1994) 221
CHIRAL EFFECTIVE FIELD THEORY

Gasser & Leutwyler Weinberg Ecker ... many others

LOW-ENERGY QCD: **Effective Field Theory** of weakly interacting **Nambu-Goldstone Bosons** (**PIONS**) representing QCD at scales $Q \ll 4\pi f_\pi \sim 1\text{ GeV}$

- **PIONS** (light / fast) and **NUCLEONS** (heavy / slow):

 $$\mathcal{L}_{\text{eff}} = \mathcal{L}_\pi(U, \partial U) + \mathcal{L}_N(\Psi_N, U, ...)$$
 $$U(x) = \exp[i\tau_a \pi_a(x)/f_\pi]$$

- Construction of Effective Lagrangian: **Symmetries**

 short distance dynamics: **contact terms**

Technische Universität München
Low-Energy Expansion: CHIRAL PERTURBATION THEORY

- small parameter:

\[
\frac{Q}{4\pi f_\pi} \quad \text{energy / momentum / pion mass / 1 GeV}
\]

successfully applied to:

- PION-PION scattering
- PION-NUCLEON scattering
- PION photoproduction and COMPTON scattering on the NUCLEON
- long range NUCLEON-NUCLEON interaction
- NUCLEAR MATTER and NUCLEI
2
Nuclear Forces
- Recent Developments -

Hierarchy of SCALES

Early history:
M. Taketani,
S. Nakamura,
M. Sasaki
6 (1951) 581

Contemporary approach:
Chiral Effective Field Theory +
Lattice QCD
NUCLEAR INTERACTIONS from** CHIRAL EFFECTIVE FIELD THEORY**

Weinberg Bedaque & van Kolck Bernard, Epelbaum, Kaiser, Meißner; ...

<table>
<thead>
<tr>
<th>(\mathcal{O} \left(\frac{Q^0}{\Lambda^0} \right))</th>
<th>Two-nucleon force</th>
<th>Three-nucleon force</th>
<th>Four-nucleon force</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\mathcal{O} \left(\frac{Q^2}{\Lambda^2} \right))</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>NLO</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>(\mathcal{O} \left(\frac{Q^3}{\Lambda^3} \right))</td>
<td></td>
<td></td>
<td>—</td>
</tr>
<tr>
<td>(\mathcal{O} \left(\frac{Q^4}{\Lambda^4} \right))</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Systematically organized HIERARCHY
NN Scattering Phase Shifts
from CHIRAL EFFECTIVE FIELD THEORY

quantitatively accurate at same level of precision as best phenomenological potentials
CHIRAL EFFECTIVE FIELD THEORY
at work in nuclear few-body systems

- example: elastic nd scattering

differential cross sections [mb/sr]

- $\frac{d\sigma}{d\Omega}$
 - 3 MeV
 - 10 MeV
 - 65 MeV

vector analyzing powers

- A_y
 - 3 MeV
 - 10 MeV

tensor analyzing powers

- iT_{11}
 - $N^2\text{LO}$
 - 10 MeV
- T_{20}
 - $N^2\text{LO}$
- T_{21}
- T_{22}

Explicit $\Delta(1230)$ DEGREES of FREEDOM

Large spin-isospin polarizability of the Nucleon

example: polarized Compton scattering

$$\beta_\Delta = \frac{g_A^2}{f_\pi^2(M_\Delta - M_N)} \sim 5 \text{ fm}^3$$

$$M_\Delta - M_N \simeq 2 m_\pi << 4\pi f_\pi$$

(small scale)

Pionic Van der Waals - type intermediate range central potential

N. Kaiser, S. Fritsch, W.W., NPA750 (2005) 259

$V_c(r) = -\frac{9 g_A^2}{32\pi^2 f_\pi^2} \beta_\Delta \frac{e^{-2m_\pi r}}{r^6} P(m_\pi r)$

strong 3-body interaction

N. Kaiser, S. Fritsch, W.W., NPA750 (2005) 259

J. Fujita, H. Miyazawa; Prog. Theor. Phys. 17 (1957) 360
Pieper, Pandharipande, Wiringa, Carlson, PRC64 (2001) 014001
Explicit $\Delta(1230)$ DEGREES of FREEDOM (contd.)

<table>
<thead>
<tr>
<th>standard chiral EFT</th>
<th>Including Δ as an explicit DOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>$X \hspace{1cm} H$</td>
</tr>
<tr>
<td>NLO</td>
<td>$X \hspace{1cm} \text{diagrams}$ + h_A</td>
</tr>
<tr>
<td>N^2LO</td>
<td>diagrams + $b_3 + b_8$</td>
</tr>
</tbody>
</table>

- **Important physics** of $\Delta(1230)$ promoted to **NLO**
- **Improved** convergence

Kaiser et al., Ordonez et al. (2007)

Krebs, Epelbaum, Meißner (2007)
Important pieces of the CHIRAL NUCLEON-NUCLEON INTERACTION

ISOVECTOR TENSOR FORCE

$S_1 \xrightarrow{V_T} S_2$

- note: **no** ρ meson

CENTRAL ATTRACTION from **TWO-PION EXCHANGE**

$\Delta(1232)$

- note: **no** fictitious σ boson

Van der WAALS - like force:

$$V_c(r) \propto -\frac{\exp[-2m_\pi r]}{r^6}P(m_\pi r)$$

... at intermediate and long distance

Short distance: **NN POTENTIAL from LATTICE QCD**

Reconstruct potential from wave function:

$V_C(r) = E + \frac{\nabla^2 \phi(r)}{2\mu} \phi(r)$

Repulsive core from Lattice QCD
PIONS (and DELTA isobars) as explicit degrees of freedom

Small scales:

\[k_F \sim 2 m_\pi \sim M_\Delta - M_N \ll 4\pi f_\pi \]

IN-MEDIUM CHIRAL PERTURBATION THEORY

\[\text{pion exchange processes in presence of filled Fermi sea} \]

2nd order TENSOR force + nucleon’s SPIN-ISOSPIN polarizability

short-distance dynamics: contact interactions
In-medium **nucleon propagator:**

\[
\frac{i}{\gamma \cdot p - M_N + i \epsilon} - 2 \pi (\gamma \cdot p + M_N) \delta(p^2 - M_N^2) \theta(p_0) \theta(k_F - |\vec{p}|)
\]

Loop expansion in ChPT

Systematic expansion of **ENERGY DENSITY** \(\mathcal{E}(k_F) \) in **powers of Fermi momentum** [modulo functions \(f_n(k_F/m_\pi) \)]

Finite nuclei \(\leftrightarrow \) energy **density functional**

Nuclear thermodynamics: compute **free energy density**

(3-loop order)

in-medium nucleon propagators incl. Pauli blocking
In-medium ChPT

3-loop \((\pi, N, \Delta)\)

Input parameter:

single contact term

basically:

analytic calculation

Output:

- Binding & saturation
 \[E_0/A = -16 \text{ MeV} , \quad \rho_0 = 0.16 \text{ fm}^{-3} , \quad K = 290 \text{ MeV} \]

- Realistic (complex, momentum dependent) single-particle potential
 ... satisfying Hugenholtz - van Hove and Luttinger theorems (!)

- Asymmetry energy \(A(k_F^0) = 34 \text{ MeV} \)
 - Landau parameters
NUCLEAR THERMODYNAMICS

NUCLEAR CHIRAL (PION) DYNAMICS

BINDING & SATURATION:
Yukawa + Van der Waals + Pauli

\[V(r) \sim -\frac{e^{-2m_\pi r}}{r^6} P(m_\pi r) \]

+ 3-body forces + contact terms

nuclear matter: equation of state

pressure

3-loop in-medium ChEFT

\[T = 25 \text{ MeV} \]
\[T = 20 \text{ MeV} \]
\[T = 15 \text{ MeV} \]
\[T = 10 \text{ MeV} \]
\[T = 5 \text{ MeV} \]

Critical Temperature \(T_c = 15 \text{ MeV} \)
(empirical: \(T_c = 16 - 18 \text{ MeV} \))

Liquid - Gas Transition at

PHASE DIAGRAM of NUCLEAR MATTER

- In-medium
 - **chiral effective field theory**
 - (3-loop in the free energy density)

- Pion-nucleon dynamics
- incl. delta isobars
- Short-distance NN contact terms
- Three-body forces

PHASE DIAGRAM

- Gas
- Liquid
- Critical point

Phase Diagram Parameters

- Temperature \(T \) [MeV]
- Baryon chemical potential \(\mu_B \) [MeV]
- Density \(\rho \) [fm\(^{-3}\)]

Critical Points

- Gas
- Liquid
- Gas - Liquid

Chemical Potential and Temperature

- \(\mu_B = 0 \)
- \(T = 16 \) MeV

Symmetric Nuclear Matter

- \(N = Z \)
PHASE DIAGRAM of NUCLEAR MATTER

Trajectory of CRITICAL POINT for asymmetric matter

... determined almost entirely by isospin dependent pion exchange dynamics

4
... from **QCD**
via
CHIRAL EFFECTIVE FIELD THEORY ...

... to the **NUCLEAR CHART**?
NUCLEAR MANY-BODY CALCULATIONS

... using NN and NNN interactions from Chiral Effective Field Theory

No-Core-Shell-Model results for ^{10}B, ^{11}B, ^{12}C and ^{13}C @ N^2LO

Navratil et al., PRL 99 (2007) 042501

systematic improvements with inclusion of 3-body interactions
DENSITY FUNCTIONAL STRATEGIES

... constrained by (chiral) symmetry breaking pattern of Low-Energy QCD

\[E[\rho] = E_{\text{kin}} + \int d^3x \left[\mathcal{E}^{(0)}(\rho) + \mathcal{E}_{\text{exc}}(\rho) \right] + E_{\text{coul}} \]

\[\rho \rightarrow \rho(x) \]

\[\text{Kohn - Sham equations} \]

\[\mathcal{E}_{\text{exc}}(\rho) : \text{from in-medium Chiral Perturbation Theory ("Pionic fluctuations")} \]

\[\mathcal{E}^{(0)}(\rho) : \text{Hartree mean field(s) from contact terms} \]

(equiv. to) \[\text{strong SCALAR and VECTOR mean fields} \]

\[\text{leading order IN-MEDIUM changes of QCD CONDENSATES} \]
Examples (part I)

- Strategy:
 - Calculate physics at long and intermediate distances using nuclear chiral effective field theory
 - Fix short distance constants (contact interactions) e.g. in Pb region
 - Predict systematics for all other nuclei

deviations (in %) between calculated and measured binding energies per nucleon ...

... and charge radii

- $\delta E/A$ (%)
- $\delta \langle r^2 \rangle^{1/2}$ (%)
Examples (part II)

charge density of 48Ca

Examples (part III):

DEFORMED NUCLEI

deviations (in %) between calculated and measured binding energies

Ground state deformations

Systematics through isotopic chains governed by isospin dependent forces from chiral pion dynamics

• **Gamow-Teller beta decays**

 interesting case:

 ^{14}C \(\beta^-\) ^{14}N anomalously long lifetime (5739 y) enables radiocarbon dating

 Theoretically **not** understood on the basis of **two-nucleon** interactions only

 Solution: **chiral effective interaction** including **three-body force**

• **Spin-orbit interactions**

 Role of **2nd order tensor force** from **pion exchange** and **three-body interactions**

• **In-medium Chiral SU(3) dynamics** and **hypernuclei**

 Weak \(\Lambda\)-nuclear spin-orbit coupling

Anomally long beta decay lifetime of 14C

- Known lifetime of 5730 years enables radiocarbon dating
- But theoretical description using realistic nucleon-nucleon interactions overestimates the GT strength

Idea: Derive a density-dependent two-nucleon force from the leading-order chiral three-nucleon force

\[
T_{1/2} = \frac{1}{f(Z, E_0)} \frac{2\pi^3 \hbar^7 \ln 2}{m_e c^4 G_v^2} \frac{1}{g_A^*} |M_{GT}|^2
\]

Expt: $B(GT) \simeq |M_{GT}|^2 \simeq 10^{-6}$

- Large suppression of GT strength at ρ_0 due to chiral 3NF!

5 CHIRAL CONDENSATE at finite DENSITY

\(T = 0 \)

- Hellmann - Feynman theorem:
 \[\langle \Psi | \bar{q} q | \Psi \rangle = \langle \Psi | \frac{\partial \mathcal{H}_{\text{QCD}}}{\partial m_q} | \Psi \rangle = \frac{\partial \mathcal{E}(m_q; \rho)}{\partial m_q} \]

\[\frac{\langle \bar{q} q \rangle_\rho}{\langle \bar{q} q \rangle_0} = 1 - \frac{\rho}{f_\pi^2} \left[\frac{\sigma_N}{m_\pi^2} \left(1 - \frac{3 p_F^2}{10 M_N^2} + \ldots \right) + \frac{\partial}{\partial m_\pi^2} \left(\frac{E_{\text{int}}(p_F)}{A} \right) \right] \]

- Sigma term: \(m_q \frac{\partial M_N}{\partial m_q} \)
- In-medium chiral effective field theory

(free) Fermi gas of nucleons

Nuclear interactions (dependence on pion mass)
CHIRAL CONDENSATE: DENSITY DEPENDENCE
Symmetric Nuclear Matter

- In-medium Chiral Effective Field Theory (NLO 3-loop)

Constrained by realistic nuclear equation of state

N. Kaiser, Ph. de Homont, W.W.

- Substantial change of symmetry breaking scenario
 between chiral limit \(m_q = 0 \) and physical quark mass \(m_q \sim 5 \text{ MeV} \)

- Nuclear Physics would be very different in the chiral limit!
GOLDSTONE Bosons in Matter

Chiral Symmetry:

\[U_{\text{strong}}(\pi^\pm A) = \pm \frac{\rho_p - \rho_n}{4 f^2_\pi} + \ldots \]

\[f_\pi \rightarrow f^*_\pi(\rho) \]

Deeply Bound States of Pionic Atoms

\[f^*_\pi(\rho_0) \approx 0.8 f_\pi \sim 1 - \frac{\sigma_N}{2 m^2_\pi f^2_\pi} \rho_0 \]

Fingerprints of Chiral Symmetry Restoration

GSI

exp.: K. Suzuki et al. (2004)

PSI

E. Friedman et al. (2004)

Low Energy Pion-Nucleus Scattering

exp.:

- E. Friedman et al. (2004)

theory:

deduced from exp.

theory pred.

\(\sigma_N \approx 50 \text{ MeV} \)
Summary and Conclusions

- **Interface of Low-Energy QCD and Nuclear Physics:** Nuclear Chiral (Thermo-) Dynamics really works!

- Importance of **Two-Pion Exchange** processes in combination with Pauli principle

- **No** σ and ρ boson exchanges required

- **Three-Nucleon Forces** are natural part of nuclear chiral dynamics → **density dependent** effective two-body interactions

- Magnitude of **Chiral Condensate** drops approximately linearly up to normal nuclear matter density but tends to **saturate** for $\rho_0 < \rho < 2\rho_0$

thanks to:
- Paolo Finelli
- Salvatore Fiorilla
- Jeremy Holt
- Norbert Kaiser